

Improving Efficiency in Stratified Audit Sampling via Bayesian Hierarchical Modeling

Dr. Koen Derks – k.derks@nyenrode.nl – statisticalauditing.com

Joint work with Lotte Mensink, Jacques de Swart, Eric-Jan Wagenmakers, and Ruud Wetzels

Stratified audit sampling is often used in practice but current statistical methodology has a limitation

Current landscape:

- Continuous demand for efficiency
- Sampling remains integral part of auditing
 - Full-population testing often difficult
- > Statistical audit sampling is efficient
 - Quantify sampling risk = optimal sample size
- Stratification further increases efficiency
 - More accurate estimates = smaller samples

Limitation:

- Current stratified evaluation methods are inherently suboptimal
 - Do not consider similarities between strata
 - Testing too much samples

There are 3 ways to evaluate a stratified audit sample, which one is most suitable depends on the population at hand

When statistically analyzing a stratified audit sample, the hierarchical modeling approach is often the most suitable one

- Misstatement rates are often not identical across strata
 - E.g., branches of an auditee can have different personnel
- Misstatement rates are often not independent between strata
 - E.g., branches of an auditee belong to the same auditee
- More realistic that misstatement rates are similar to some degree

A statistical philosophy that aligns well with the hierarchical modeling approach and has practical advantages is Bayesian statistics

Transparent incorporation and updating of pre-existing information

Increases efficiency

> Ideally suited for hierarchical modeling

In this example, a group auditor must form an opinion on the group financial statements but also wants to form an opinion on the

components

- Auditee is a furniture retailer with 20 branches
 - Centralized purchasing system
 - Individual inventory clerks
- ➤ The group auditor decides to stratify the population based on the 20 branches
 - Auditors check goods received notes

Branch (s)	Items (N _s)	Samples (n_s)	Misstatements (k_s)
1	5,000	100	10
2	5,000	100	6
3	5,000	100	0
4	5,000	100	5
5	5,000	100	3
6	5,000	50	3
7	5,000	50	3
8	5,000	50	1
9	5,000	50	2
10	5,000	50	2
11	10,000	25	1
12	10,000	25	3
13	10,000	25	1
14	10,000	25	1
15	10,000	25	0
16	10,000	15	0
17	10,000	15	0
18	10,000	15	0
19	10,000	15	1
20	4,000	15	3
Total	144,000	950	43

In this example, the hierarchical model Improves accuracy compared to the independent model

- ➤ Hierarchical model shrinks stratum estimates to the grand mean (dashed line) due to sharing info
- Degree of shrinkage partly depends on sample size n
 - e.g., stratum 1 (low) versus stratum 20 (high)
- Stratum estimates are 38% less uncertain
- > Population estimate (Pop) is 30% less uncertain

Hierarchical modeling reduces the required sample size compared to the independent approach while being risk-free

- ➤ The hierarchical modeling approach is just as effective as the independent approach
- ➤ The hierarchical model has higher power at equivalent sample sizes
- Practical benefit: Sample size reduction
 - Ranges from 63% with 2 strata up to 93% with 20 strata
 - Control reliance strategy can be applied via the prior distributions

Conclusion and discussion

- Hierarchical modeling is often most suitable approach for stratified audit samples
- Bayesian hierarchical modeling does not compromise audit effectiveness
- Bayesian hierarchical modeling increases power and reduces required sample sizes
- Easy to apply via the open-source software JASP for Audit (Derks et al., 2021)
- What is the reason that auditors at the moment don't use these methods?

References

- Derks, K., L. Mensink, J. de Swart, E.-J. Wagenmakers, and R. Wetzels. 2024.
 Improving efficiency in stratified audit sampling via Bayesian hierarchical modeling.
 PsyArXiv. https://doi.org/10.31234/osf.io/tgq5z
- Derks, K. J. de Swart, E.-J. Wagenmakers, J. Wille, and R. Wetzels. 2021. JASP for Audit: Bayesian tools for the auditing practice. *Journal of Open Source Software* 6 (68): 2733. https://doi.org/10.21105/joss.02733
- Durney, M., R. J. Elder, and S. M. Glover. 2014. Field data on accounting error rates and audit sampling. *Auditing: A Journal of Practice & Theory* 33 (2): 79–110. https://doi.org/10.2308/ajpt-50669

Appendix A: Simulation study design

- Realistic audit conditions
 - Strata: $S \in \{2, 3, 6, 20\}$
 - Correlation: $r \in \{0, 0.5, 1\}$
 - 95% of misstatement rates < 0.1 (Durney, Elder, and Glover, 2014, Table 3, Panel A)
 - $n_s \in \{25, 50, 100, 150, 200, 250, 300, \text{ proportional } = 0.3N_s, \text{ random}\}$
- Outcome measures for H_0 : θ (misstatement) $\geq \theta_{max}$ (tolerable misstatement)
 - Effectiveness: α (sampling) risk
 - Efficiency: 1β (power)

	H_0 is true	H_0 is false	
Reject H_0	Type-I error (α risk)	Correct decision $(1 - \beta, Power)$	
Do not reject H_0	Correct decision $(1 - \alpha)$	Type-II error (eta risk)	

Appendix B: Simulation study results (sampling risk)

Appendix C: Simulation study results (power)

